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Abstract. A discussion of quantum measurement theory is presented. I t  is argued that the 
quantum measurement problem consists in the failure of any formalism based on unitary 
evolution to describe fully the observed behaviour in measurement-like processes. It is 
shown that the problem is essentially concerned with the phase of the coherence between 
orthogonal eigenstates of an ohject/measuring device system. I t  is then proposed that the 
observed behaviour is fully described if the value of this phase i s  formally undecidable. 

1. Introduction-the nature of the problem 

The problem in the basic workings of quantum mechanics can be stated as follows: 
the behaviour of many physical systems is not fully described by Schrodinger’s equation 
(or its equivalents). Schrodinger’s equation always produces a unitary evolution, while 
systems such as measuring devices are frequently involved in non-unitary changes in 
their state [ l] .  An illustrative example is given in the appendix. This problem is not 
one of philosophy or interpretation, but one of physics and  mathematics, o r  so we 
will argue below. 

It is common practice to avoid stating the problem in such stark terms. One can 
follow the detailed quantum description of a measuring apparatus, and  it soon emerges 
that coherences between parts of the apparatus’ complete quantum state become 
vanishingly small (or have rapidly varying phase). The parts which thus lose their 
mutual coherence can be recognised as representing different macroscopic situations. 
At this point one merely states that in practice the apparatus will adopt (on a random 
basis) just one of the distinguishable possibilities. It is not that the quantum calculations 
have failed to show how the apparatus actually reaches its final state; rather the only 
meaning of the quantum mechanics was as a tool to supply which final states the 
apparatus might adopt, and  their relative probabilities. 

Arguments like that of the previous paragraph fail to resolve the problem. To say 
that the quantum calculations are a tool to be used to obtain the possible states of a 
macroscopic system, one first needs to identify one’s macroscopic system. However, 
there is no prescription for telling whether a given apparatus is such a macroscopic 
system, o r  is merely part of the quantum tool to be used to describe another system. 
This produces the problem of the ‘chain of measuring devices’ [2]: where d o  you draw 
the line between the quantum world with its superpositions, and the definiteness of a 
completed measurement? (i.e. where or how does nature draw such a line). 

In  section 2 we will summarise the mathematical description of a measurement 
process, and  show where the description is incomplete. In section 3 we will argue that 
a certain minimum requirement may be made of the evolution of a quantum system, 
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which, if it came about, would be sufficient to solve the measurement problem. In 
section 4 we will propose a means by which the required condition may come about. 

2. Quantum measurement theory 

There are three main ingredients in the complete description of a measurement process. 
Firstly, the object being measured should interact with a measuring device in such a 
way as to produce a correlation between states of the measuring device and states of 
the object. For example, let the measured object 0 be a two-state system such as a 
single spin, spanned by the basis states I+), I-). Let the object be in interaction with 
another two-state system M spanned by 12), 11). 0 dnd M are treated in  quantum 
mechanics as a composite four-state system, the basis states of which may be con- 
veniently written as 

Initially, system 0 is in the state (ai+) + PI-)), and system M is in the state II), 
so that the composite state is 

The density matrix for this (pure) state is [T ;!: i 
where * denotes complex conjugation. 

Let the evolution of the system be governed by the propagator 

/ 1  0 0 o \  
0 0 0 
0 0  1 
0 exp(i8) 0 0 

Then the final state of the system is UZ, with density matrix 

0 O 
0 0  0 
0 0  0 

F =  

(2)  

13) 
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The axioms of quantum mechanics require that the propagator U must be unitary, as 
it is here. For S =0,  U may be derived from the Hamiltonian [3] 

where o, is the z Pauli spin matrix, operating on 0, and P is the projection operator 

In the final state F there is the required correlation between states of the object 0 
and measuring device M. 

The next ingredient in the description of the measurement process is that the 
off-diagonal elements of the density matrix F should vanish. The basis (of object 
states) in which this occurs is the set of states which are eigenstates of some observable: 
this is the observable which the device is said to be measuring. The diagonalisation 
of the density matrix describes the fact that after the measurement no  effects can be 
observed which depend on  interference between the parts I+)  and I - )  of the original 
state of the object. 

There are two ways in which a completely unitary evolution can lead to an  
approximately diagonal density matrix, as shown by Haake and Walls [4]. Firstly, 
one  can argue that a two-state measuring device is too great a simplification, and one 
employs instead a many-state or even continuous ‘pointer variable’. The final state of 
the O + M  system can then be a superposition for which the pointer state consists of 
two parts with essentially no  overlap between them. The relevant off-diagonal density 
matrix elements (coherences) are then infinitesimally small. Secondly, instead of being 
infinitesimal, the coherence might merely have a phase which varies very rapidly with 
the value of the pointer variable. If the system is subject to a small amount of noise, 
the coherence vanishes due  to the rapid variation of the phase. 

We will now argue that the more general case is that for which the coherence has 
a highly sensitive phase. For any multistate measuring device M’, one can return to 
the two-state measuring device M described in (1) as follows: simply add to M’ a 
device which automatically prepares a two-state quantum system in one of its states, 
depending on the value of the pointer variable of M’. For example, the G M  tubes 
discussed in the appendix may be linked to a Penning trap so that a single trapped 
electron can be rotated into the spin-up or spin-down direction, with respect to a fixed 
axis, depending on which tube fires. One can then regard the trapped electron as the 
measuring device M which interacts with 0, the effects of the trap and  M’ being 
incorporated into the propagator (2) .  With a two-state measuring apparatus, the 
coherences in F cannot vanish or even become small, but they can have a phase 6 
which is highly sensitive to perturbations and  to changes in the initial conditions. 

Many authors are content to finish the discussion once an approximately diagonal 
density matrix is obtained. It is then argued that the density matrix describes the 
statistics of the 0 + M system, and that the only way in which an ensemble of systems 
can have zero coherence is that each individual system should adopt one of the states 

1 0 0 0  0 0 0 0  

(4) 

0 0 0 0  
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(with probabilities given by the diagonal elements of F ) .  However, the state F is a 
perfectly respectable quantum state. So far the description has given no reason why 
the final state of each system in an  ensemble should not be given by (3),  with various 
values for the phase 6. The difference between (3) and  (4) is essentially the quantum 
measurement problem. 

The final ingredient in the description of a quantum measurement process is, then, 
some means by which the mathematics should unambiguously show that the final state 
is given not by (3) but by (4). The textbook approach is usually to state by postulate 
that the system is described by (4) ‘after a measurement has occurred’, the transition 
from (3) to (4) being called ‘the collapse of the wavefunction’ (but note that this phrase 
is used differently in [4]). However, exactly what constitutes a measurement is not 
specified. 

Two further comments should be made. Firstly, the situation given by (4) cannot 
be arrived at by unitary evolution. Secondly, the two possible final states in (4) usually 
correspond to differences in the world lines of the relevant systems over an extended 
region of spacetime. The latter implies that it may not be meaningful to identify a 
time ‘at which’ the state ‘collapses’ from (3) to (4). This is an  example of the non-local 
character of the quantum theory [ 2 ] .  

3. A minimum requirement 

So far, the mathematical description (up  to equation (3))  provides a method by which 
a physicist, looking at the equations, can decide where a non-unitary evolution will 
occur: simply look for coherences with extremely sensitive phase. The possible final 
states at the end of the non-unitary evolution are also clear (those states whose mutual 
coherences have obtained a very sensitive phase), as are their relative probabilities. 
However, as yet there is no mathematical reason why the quantum/measuring-device 
system should not remain in a superposition state. The phase of the coherence may 
be rapidly changing, but in principle it has some value (even if on repeated runs of 
the experiment it is technologically impossible to reproduce a given value and thus 
observe the coherence via an  interference effect.) To solve this dilemma, the minimum 
requirement we need make of the evolution of the quantum/measuring-device system, 
is, we will argue, as follows. 

(R)  In a process of the measurement type, the phase of the coherence (between 
orthogonal eigenstates of the measured observable) acquires an  additional property 
(which we leave unspecified for the moment) which makes it mathematically distin- 
guishable from phases arising in normal, non-measurement-type, evolution. 

The idea behind this requirement is that we try to include actually in the mathematics 
the job which previously the physicist had to d o  by means of intuition. A candidate 
for the ‘additional property’ mentioned in requirement R is given in section 4. The 
property which we have already noted, that of being highly sensitive to initial conditions 
and  perturbations, is not sufficiently distinctive for our purposes, since the degree of 
sensitivity depends on what time or distance scale one is considering. We will, however, 
return to this possibility in section 4. 
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We now need to show how requirement R is sufficient to solve the measurement 
problem. At this point in the argument, one might imagine a quantum system whose 
evolution, as determined by Schrodinger’s equation, puts it in the state 

where the phase 6 satisfies R. Since we have a measuring-type process, however, the 
final state of the system will actually be either I+) or  I-), and not the superposition 
given by IS). To make the theory correctly describe this experimental fact, we state 
as a basic postulate of the theory: 

Postulate 1 .  The state vector of a quantum system evolves according to Schrodinger’s 
equation. The physical meaning of a state containing phases with the special property 
mentioned in R is that the system will evolve into one or  other of the states thereby 
singled out. 

This postulate replaces the usual postulate concerning the state of a quantum system 
after a ‘measurement’ has occurred. Postulate 1 is an  improvement because the former 
postulate failed to define what is meant by a ‘measurement’. Note that the loss of 
coherence information brings irreversibility into the dynamics: this is similar to 
Boltzmann’s proposal for resolving the paradox of how irreversible macroscopic 
behaviour can arise from apparently reversible microscopic equations. 

The argument relies on the idea that the coherence phase can single out one set of 
basis states from all the other sets. This is not obvious, since if 6 is allowed to vary, 
then interference effects will be ‘washed out’, no  matter which basis one uses to specify 
the final state. However, the basis given by (1)  is the only one in which the coherence 
aP* exp(-i6) describes a circle in the complex plane, as 6 varies. The argument can 
be applied to a many-state system also-one examines the coherence between each 
pair of substates of the system, choosing each sub-basis accordingly. 

4. Proposed means by which the measurement problem is solved 

The argument of section 3 is only convincing if  we can find an acceptable candidate 
for the special ‘additional property’ mentioned in R. We will make a few observations, 
and  then propose such a candidate. 

We have already noted that Schrodinger’s equation can lead to coherence phases 
which are very sensitive to initial conditions and to perturbations. We made the 
comment that this property does not solve the measurement problem, since although 
the phase in this case may be rapidly varying, it still has some definite value and  the 
coherence is, in principle, just as definite as that arising in more simple evolution. 
However, what if the phase were so sensitive that there is no time- or distance-scale 
on which the phase is not rapidly varying? This is just the kind of behaviour found 
in classical systems having the property of ‘mixing’. ( In  ‘mixing’ systems two or more 
types of motion are possible, and points infinitesimally close together in any region 
of the system’s phase space belong to different types of motion. This is closely related 
to classical chaos.) The avalanche or other complicated processes occurring in measur- 
ing devices are all likely to have mixing or similar properties. However, mixing is 
suppressed in quantum systems [ 5 , 6 ] .  Structure in phase space does not occur on a 



2910 A M Steane 

scale smaller than h, so that all the features of the quantum state, including 6, can be 
accurately described. 

Peres’ discussions [ 3 , 7 ]  may be summarised as the view that the distinctive property 
mentioned in R is this: the coherence phases are randomised by external influences. 
These influences are, of course, due to other physical systems, which have not been 
included in the quantum theory of the system under investigation. He argues that just 
as it is impossible in practice for a system to be completely isolated from its surround- 
ings, so also it is part of the nature of the quantum theory that something must remain 
unanalysed. Any given measuring device, for instance, can be analysed; however, one 
will always have small effects remaining which are left out of the analysis but which 
are sufficient to randomise the phase. This point of view would solve the problem in 
the vast majority of cases. It falls down eventually, however, when the evolving physical 
system is the whole universe, which presumably does behave as an  isolated system. 

How easy might it be to calculate the value of a highly sensitive coherence phase? 
Such a calculation must be made by means of physical processes such as writing on 
paper, electronic computing, or perhaps merely the firing of many neurons. If the 
phase were sufficiently sensitive, however, these physical processes would themselves 
have a significant influence on the value of the phase. This might cause such phases 
to be impossible to calculate. 

This leads us on to the following idea: can we envisage that the universe itself 
cannot ‘calculate’ the value of the phase?-i.e. the phase has no definite value? This 
rather unclear proposal can be given a more firm expression, by means of Godel’s 
theorem [8]. Godel’s theorem states, briefly, that in any ‘formal system’ of sufficient 
complexity, it is possible to state a theorem, within the syntax of the formal system, 
whose truth value cannot be determined within that formal system. Such theorems 
are said to be ‘formally undecidable’. If, as we propose, the physical universe may be 
said to be such a formal system, then there exist physical systems whose behaviour is 
undecidable within the formal system of the universe. That is, one could find a property 
of such a system which is not merely incomputable in practice, but which could be 
proved to be formally undecidable. 

We propose that the measurement problem be solved as follows. 

Posrulate 2. The Schrodinger equation of a measurement-type process is Godelian. 
Specifically, the coherence phase 6, which is subject to the Schrodinger equation, has 
the property that there exists a value e for which the proposition ‘ 8  - n- < 6 < e + n-’ 
is formally undecidable. 

We now have a means by which requirement R may be satisfied, and so the 
measurement problem is solved, via postulate 1. The undecidable proposition can be 
simplified as follows: first quantise the phase 6 by associating with it an integer n 
given by 

6 s n r <  S +  T.  

Postulate 2 then states that it is undecidable whether the solution to the Schrodinger 
equation has odd or even n. 

Kanter [9] has recently discussed undecidable correlations arising in classical 
systems. It is well known that physical systems can have undecidable behaviour. For 
example, a digital computer can be programmed to search methodically for the solution 
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to an undecidable problem-it is then undecidable as to whether the computer program 
will ever halt. Kanter shows how to identify an undecidable feature of the state of a 
very simple and general class of systems. However, the undecidability in all these 
cases is related to the boundedness of the system: as soon as the system has a finite 
number of possible states, its behaviour is decidable. For example, a finite computer 
(or Ising system) can only propose trial solutions to the ‘domino-snake’ problem [9] 
with a finite number of tiles. Quantum systems (of finite size, energy etc) cannot have 
infinitely many states, unlike their classical counterparts, so that it is not straightforward 
to identify truly undecidable physical systems. However, if we return to the idea that 
the physical universe itself may be regarded as a formal system, then it is reasonable 
to suppose that undecidable behaviour is possible within it. 

Finally, the question may be asked as to exactly how or when the 0 + M system 
evolves from equation ( 3 )  to equation (4). The answer is that one need not attempt 
to specify this. The mathematical description gives all the possible information about 
the experimental situation, including the information as to whether the final state will 
be (3) or (4).  In making calculations, one can in fact use a state of the type (3) or (4) 
to describe the system at any time (i.e. even before the measurement process has 
occurred), as Aharonov and Vaidman [ lo]  point out. The undecidable phase simply 
serves as an indicator that one must expect the experimental apparatus to adopt one 
of the states given by (4). 

5. Conclusion 

In this paper we have argued that the measurement problem is a problem in mathematics 
rather than physical interpretation, involving the failure of the quantum theory to 
describe adequately the non-unitary processes which occur in the real world. In section 
3 we identified where in the mathematics a new feature needs to be introduced, and 
argued that if the coherence phase in a measurement-type process were somehow of 
a different nature to that rising in more simple processes, then the non-unitary evolution 
would be adequately described. This is so because once the coherence phase is 
identifiable, then so are the possible final states at the end of the non-unitary evolution, 
and one can merely state by postulate that the system is put into one of these states. 

In section 4 we reviewed some ideas as to how the required behaviour for the phase 
might come about in practice. We finally proposed that the special property of the 
coherence phase is that its value is formally undecidable within the formal system of 
the universe. This proposal appears here in a somewhat speculative fashion. The 
evidence for its validity is that the thrust of the nature of the problem seems to be 
pointing towards this type of resolution. To describe a measurement process fully, 
one must include the effects of a wider and wider ‘all-embracing’ system, as each 
successive attempt to include all influences makes the behaviour sensitive to smaller 
and smaller as-yet-unincluded parts of the ‘environment’. This implies that a complete 
description may need to be self-referential, in order that the universe may completely 
specify its own state. 

The present argument at least suggests that a worthwhile programme of research 
would be to try to find a system which is described by a Godelian Schrodinger equation. 
It may be possible to approach this task in a general way by extending the phase-space 
mapping ideas used in the study of chaos. If the system could be regarded as a model 
for a measurement process, and if it could be argued that its undecidable feature can 
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be pinpointed as the coherence phase, then one would feel that a suitable and  complete 
model of non-unitary (measurement-like) processes had been found. 
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Appendix. Illustration of the measurement problem 

The gap in basic quantum mechanics which we are referring to as the measurement 
problem may be illustrated as follows. 

It is not clear how to give a detailed description of exactly what goes on when, for 
example, a single electron in a quantum superposition state is able to enter two 
Geiger-Muller ( G M )  tubes simultaneously. (We use a Geiger-Muller tube since it is 
easy to describe, but the argument applies in principle to any measuring device, o r  to 
similar processes even if they are not normally referred to as a ‘measurement’.) 

The process occurring in a Geiger-Muller tube is, roughly, that a particle entering 
is scattered by gas molecules in the tube. The collisions ionise some of the molecules. 
The ions are accelerated in the high electric field of the tube and produce more ions 
in further collisions, until an  avalanche of ions and electrons is registered as a pulse 
of current in the tube. 

Now consider an electron in a quantum state which has a finite amplitude for the 
electron to pass into two separate tubes A and B (for example, the tubes are positioned 
at  the output of a Stern-Gerlach apparatus, o r  at the slits in a Young’s slits experiment, 
etc). Initially, the electron’s state is a superposition of ‘electron entering A’ and  
‘electron entering B’. As the electron ‘enters’ the two tubes, the first processes that 
occur are quantum scattering off one or two gas molecules. The state of the electron/gas- 
molecule system becomes a superposition of ‘electron in A, gas molecules in A scattered’ 
and  ‘electron in B, gas molecules in B scattered’. The electron and  scattered molecules 
(or ions) then produce further collisions, but every such collision is a quantum process, 
so that the state of the whole electron/GM-tube system remains a superposition of 
‘electron in A, gas molecules in A scattered’ and ‘electron in B, gas molecules in B 
scattered’. Thus the ‘measuring instrument’ cannot perform the measurement: its final 
state consists of a superposition of the states corresponding to all the possible outcomes 
of the measurement. In practice, however, one of the G M  tubes certainly registers a 
current pulse (or  would if it had a higher quantum efficiency), and  the other certainly 
does not, so we have a paradox-it is the Schrodinger cat paradox [ 2 ] .  Further 
comments can be made, such as that a higher-order measuring instrument (such as a 
conscious observer) could measure the state of the G M  tubes, and  that as long as the 
superposition is eventually collapsed, the physical predictions are independent of the 
stage at which the collapse occurs. However, it should be possible to understand the 
working of a simple Geiger-Muller tube without resort to undescribed ‘higher-order’ 
systems: the attempt to understand it should at least be made. 

The point made above may be expressed mathematically by noting that 
Schrodinger’s equation or  its equivalents always produces a unitary evolution of the 
state vector, so that if any part of a composite system (here the electron) is in a 
superposition, then the whole composite system (electron plus G M  tubes) is in a 
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superposition. The fact that the final state of the GM tubes is not a superposition, in 
any given experiment, implies that the evolution must have been non-unitary, and 
therefore not described by Schrodinger’s equation. This argument applies even if the 
final superposition state has a nearly diagonal density matrix and so obeys classical 
statistics, as discussed in section 2 above. 
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